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Abstract. We present the Wronskian form of theN -soliton solutions of the differential–
difference Kadomtsev–Petviashvilli (D1KP) equation. Also a wider class of rational solutions
are derived using semi-discrete analogue of Schur polynomials and its generalization. Our
approach is based on Sato theory formalism which gives all these solutions naturally.

1. Introduction

It is well known that the soliton equations can be rewritten in bilinear form through a suitable
dependent variable transformation. The solution of this bilinear form can be obtained
either through perturbation or the Wronskian technique [1–5]. This is popularly known
as Hirota’s bilinear method [1]. Using this technique, Hietarinta systematically classified
Hirota’s bilinear forms which possess three-Soliton solutions [2]. It is one of the direct
methods widely used because of its simplicity and efficiency. In the usual Hirota’s bilinear
method, one uses perturbational expansions to the bilinear equations to obtain the soliton
solutions in exponential form. The compact form of expressing theN -soliton solutions
for Hirota’s bilinear equations was first introduced by Satsuma [3] and further developed
by Freeman and Nimmo [4] in terms of the Wronskian determinant. This procedure has
been applied to the KP [5], the Boussinesq [6], and other soliton systems [7–9]. It is also
known that theN -soliton solutions of KP hierarchy can be derived through Sato theory
[10–12], which is expressed by theτ function [13, 14]. Thisτ function can be expressed
in the form of the generalized Wronskian determinant defined on the infinite-dimensional
Grassmannian manifold [10–14]. In this framework, Hirota’s bilinear forms arise naturally
as Pl̈ucker relations. Hence, it is convenient to deal with the Wronskian determinant in order
to find theN -soliton solutions. Using the Laplace expansion of the determinant, we can
easily verify that theτ function satisfies the given Hirota’s bilinear form. It is remarkable
that through this representation the algebraic properties and the structure of the solutions
can be explained explicitly [15–18].

It has been recognized that integrable systems, in the sense of inverse scattering
transform (IST) [19], possess other classes of solutions as well, called rational solutions.
Deriving rational solutions for soliton systems is very important and they often play a
significant role in explaining the physical applications of the system. The class of rational
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solutions for the KdV equation was first investigated by Airaultet al [20]. Consequently,
Ablowitz and Satsuma [21] proposed a direct approach to study the rational solutions of
soliton systems, by taking the long-wave limit in the multisoliton solutions. Nimmo and
Freeman [22] represented these rational solutions in the Wronskian determinant form. Since
then, various methods have been proposed for obtaining rational solutions for integrable
systems, notably by Airault and Moser [23], Adler and Moser [24], Satsuma and Ishimori
[25], Gilson and Nimmo [26], Nakamura [27], Pelinovsky [28] and Hu [29]. Usually,
one can obtain the higher rational solutions through the repeated application of Bäcklund
transformations on the known, simple, rational solution. On the other hand, as already
mentioned, Sato theory provides a systematic approach to find the rational solutions of KP
hierarchy. The fundamental ones are represented in terms of Schur polynomials which
satisfy a certain set of linear differential equations. Thus rational solutions are special
examples of the general Wronskian solutions obtained through Sato theory. Although
intensive research is going on in this direction for continuous integrable systems, the search
for the rational solutions for differential–difference equations has been relatively low-key
[30]. In fact it is other aspects of differential–difference equations that have attracted most
attention in recent years [31–49].

Using the differential–difference analogue of Sato theory [49], we derived Lax pairs,
symmetries and conservation laws of the D1KP equation. In this paper, we employ
the bilinear formalism and present theN -soliton solutions and also give explicitly the
rational solutions of theD1KP equation. We observe that rational solutions are merely
the consequence of specializing the originalτ determinant derived forN -soliton solutions,
using Sato theory.

2. Wronskian solution

Sato introduced a powerful tool by which it has been shown that a hierarchy of equations
can be derived, all of which have common solutions expressed in terms of theτ function
involving an infinite number of independent variables. Here we use Sato theory [10–12, 49]
framework to derive theN -soliton solutions in terms of the Wronskian for the D1KP
equation.

Now, we consider the D1KP equation in the form

1

(
∂u

∂t2
+ 2

∂u

∂t1
− 2u

∂u

∂t1

)
= (2+1)∂

2u

∂t21
(1)

whereu = u(t1, t2, n) and1 denotes the forward difference operator defined by1f (n) =
f (n+ 1)− f (n) and the shift operatorE defined byEf (n) = f (n+ 1). The operators1
andE are connected by1 = E− 1. This equation was first derived by Dateet al [48] and
has been the subject of more detailed study recently [49]. Equation (1) can be written in
bilinear form through the variable transformation given by

u(t1, t2, n) = ∂

∂t1
log

τn+1

τn
. (2)

Substituting this transformation in equation (1) we get the bilinear form

(Dt2 + 2Dt1 −D2
t1
)τn+1 · τn = 0. (3)

HereD denotes the Hirota bilinear operator [1, 2]. We first expand equation (3) using the
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Hirota operator, and get

τn
∂τn+1

∂t2
− τn+1

∂τn

∂t2
+ 2τn

∂τn+1

∂t1
− 2τn+1

∂τn

∂t1
+ 2

∂τn+1

∂t1

∂τn

∂t1
− τn ∂

2τn+1

∂t21
− τn+1

∂2τn

∂t21
= 0.

(4)

We prove in the following that the solution of the D1KP equation can be written in the
compact form using the Wronskian (Casorati) determinant

τn = W(f (1)n , f (2)n , ..., f (N)n )

W =

∣∣∣∣∣∣∣∣
f (1)n 1f (1)n · · · 1N−1f (1)n

f (2)n 1f (2)n · · · 1N−1f (2)n

...
...

. . .
...

f (N)n 1f (N)n · · · 1N−1f (N)n

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
f (1)n f

(1)
n+1 · · · f

(1)
n+N−1

f (2)n f
(2)
n+1 · · · f

(2)
n+N−1

...
...

. . .
...

f (N)n f
(N)

n+1 · · · f
(N)

n+N−1

∣∣∣∣∣∣∣∣∣

(5)

wheref (j)n = f (j)(t1, t2, n), j = 1, 2, . . . , N are the solutions of a set of linear partial
differential–difference equations given by

∂f
(j)
n

∂t1
= 1f (j)n

∂f
(j)
n

∂t2
= 12f (j)n j = 1, 2, . . . , N. (6)

A particular solution of (6) is readily given by

f (j)n = (1+ pj )n exp(pj t1+ p2
j t2) j = 1, 2, . . . , N. (7)

In order to construct theN -soliton solutions, we take the form off (j)n as

f (j)n = expηj + expξj (8)

with

ηj = pj t1+ p2
j t2+ n log(1+ pj )+ ηj0 (9)

and

ξj = qj t1+ q2
j t2+ n log(1+ qj )+ ξj0. (10)

Following Nimmo and Freeman’s notation [4, 5] let us denoteτn in (5) as

τn = |0, 1, 2, . . . , N − 1| =

∣∣∣∣∣∣∣∣∣
f (1)n f

(1)
n+1 · · · f

(1)
n+N−1

f (2)n f
(2)
n+1 · · · f

(2)
n+N−1

...
...

. . .
...

f (N)n f
(N)

n+1 · · · f
(N)

n+N−1

∣∣∣∣∣∣∣∣∣ . (11)
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The terms involved in (4) may then easily be computed as

τn+1 = |1, 2, . . . , N |
∂τn

∂t1
= |0, 1, 2, . . . , N − 2, N | −N |0, 1, 2, . . . , N − 1|

∂τn+1

∂t1
= |1, 2, 3, . . . , N − 1, N + 1| −N |1, 2, . . . , N |

∂τn

∂t2
= N |0, 1, 2, . . . , N − 1| − |0, 1, 2, . . . , N − 3, N − 1, N |

+|0, 1, 2, . . . , N − 2, N + 1| − 2|0, 1, 2, . . . , N − 2, N |
∂τn+1

∂t2
= N |1, 2, . . . , N | − |1, 2, . . . , N − 2, N,N + 1|

+|1, 2, . . . , N − 1, N + 2| − 2|1, 2, . . . , N − 1, N + 1|
∂2τn

∂t12
= N2|0, 1, 2, . . . , N − 1| − 2N |0, 1, 2, . . . , N − 2, N |

+|0, 1, 2, . . . , N − 3, N − 1, N | + |0, 1, 2, . . . , N − 2, N + 1|
∂2τn+1

∂t12
= N2|1, 2, . . . , N | − 2N |1, 2, . . . , N − 1, N + 1|

+|1, 2, . . . , N − 2, N,N + 1| + |1, 2, . . . , N − 1, N + 2|

(12)

where the linear equations (6) are used in the derivation of the above results. Using the
above expressions, we see that the left-hand side of equation (4) reduces to

2|0, 1, 2, . . . , N − 1||1, 2, . . . , N − 2, N,N + 1|
−2|0, 1, 2, . . . , N − 2, N ||1, 2, . . . , N − 1, N + 1|
+2|0, 1, 2, . . . , N − 2, N + 1||1, 2, . . . , N |

which is the Laplace expansion of the 2N × 2N determinant∣∣∣∣ 0 N̂ − 2 © N − 1 N N + 1
0 © N̂ − 2 N − 1 N N + 1

∣∣∣∣ (13)

whereN̂ − 2= |1, 2, . . . , N − 2| and© denotes the(N − 2)× (N − 2) zero matrix. Since
the above determinant is zero it indeed verifies thatτn satisfies the bilinear equation (4)
identically.

3. Rational solutions

In this section, we describe the method of finding the class of rational solutions for the
D1KP equation and show that they are merely a particular case of theN -soliton solutions
given in terms of the Wronskian (5). For this purpose, we consider the set of linear partial
differential–difference equations (6) with (7) as particular solution. Note thatf

(j)
n in (7)

can be expressed as a power series inpj and hence we have

(1+ pj )n exp(pj t1+ p2
j t2) =

∞∑
m=0

Pmp
m
j .
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Expanding the left-hand side of the above equation and comparing the like powers ofpj on
both sides we arrive at the semi-discrete analogue of the Schur polynomials and they can
be expressed in a compact way as

Pm =
∑

α0,α1,α2>0
α0+α1+2α2=m

n(n− 1)(n− 2) . . . (n− α0+ 1)tα1
1 t

α2
2

α0!α1!α2!
(14)

wherePm = 0, ∀m 6 0, 1Pm = Pm−1, ∂Pm/∂t1 = 1Pm, and ∂Pm/∂t2 = 12Pm. They
indeed satisfy the equation (3). On using (2), they become rational solutions of (1). It is
interesting to note that these Schur polynomials can be used to generate a further class of
rational solutions given by

Pl1l2···lN =

∣∣∣∣∣∣∣∣
Pl1 Pl2 · · · PlN
Pl1−1 Pl2−1 · · · PlN−1
...

...
. . .

...

Pl1−N+1 Pl2−N+1 · · · PlN−N+1

∣∣∣∣∣∣∣∣ (15)

where l1, l2, . . . , lN are distinct integers. We list below the first few rational solutions
generated using (14) and (15):

P0 = 1

P1 = n+ t1
P2 = n(n− 1)

2!
+ t21

2!
+ nt1+ t2

P3 = n(n− 1)(n− 2)

3!
+ t31

3!
+ n(n− 1)

2!
t1+ nt

2
1

2!
+ nt2+ t1t2

P12 = n

2
+ n

2

2
− t2+ nt1+ t

2
1

2

P13 = −n
3
+ n

3

3
+ n2t1+ nt21 +

t31

3

P23 = −n
2

12
+ n

4

12
− nt2+ t22 −

nt1

3
+ n

3t1

3
+ n

2t21

2
+ nt

3
1

3
+ t41

12

P123= n

3
+ n

2

2
+ n

3

6
− nt2+ nt1

2
+ n

2t1

2
− t2t1+ nt

2
1

2
+ t

3
1

6
.

(16)

It turns out that a more general class of rational solutions can be constructed from the
τ function given byτn = W(f (1)n , f (2)n , . . . , f (N)n ) with the f (j)n ’s given by

f (j)n =
(
∂

∂pj

)mj
exp[η(pj )] ≡ Pmj (pj ) · exp[η(pj )] j = 1, 2, . . . , N, mj > 0

(17)

and they satisfy the equations (6) with

η(pj ) = (n+ nj ) log(1+ pj )+ pj (t1+ t̃1j )+ p2
j (t2+ t̃2j ) (18)

wherenj , t̃1j and t̃2j are arbitrary phase constants. From (17), we have

Pmj (pj ) = mj !
∑

α0,α1,α2,>0
α0+α1+2α2=mj

mj∏
k=0

(θk(pj ))
αk

αk!
(19)
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where

θk(pj ) = 1

k!

∂k

∂pj
k
η(pj ). (20)

These polynomialsPmj (pj ) are the generalized Schur polynomials [12, 28, 50]. Again, it
should be noted that these generalized Schur polynomials and the Wronskian formed by
them are also rational solutions for the D1KP equation. But this time the entries in the
determinant are arbitrary linear combinations of Schur polynomials.

We observed that all these rational solutions are the special cases of those represented
by equation (5) together with (6). Hence, it is clearly demonstrated that the soliton solutions
and various kinds of rational solutions discussed in this paper quite naturally arise out of
the τ function derived in the framework of Sato theory.

By introducing an infinite number of time variables in the linear equations

∂

∂tm
f (j)n = 1mf (j)n j = 1, 2, . . . N, m = 1, 2, . . . (21)

it is straightforward to generalize the above ideas for obtaining the Wronskian and rational
solutions for D1KP hierarchy.
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